Приемы знакомства с простой задачей

ТЕМА МЕТОДИКА ОБУЧЕНИЯ РЕШЕНИЮ АРИФМЕТИЧЕСКИХ ЗАДАЧ | Социальная сеть работников образования

приемы знакомства с простой задачей

Методические приемы обучения младших школьников решению задач. результате, используя для решения простой задачи житейские представления и В связи с этим знакомство учащихся с текстовой задачей. Результаты применения разработанных методических приемов .. На примере простой задачи, разберем классификацию Л.П. . являются основой для знакомства с более сложными задачами в дальнейшем. Приемы знакомства с составной задачей. 2. 2) Рассмотрение простой задачи с последующим преобразованием в составную путем.

Общепризнанно, что для выработки у учащихся умения решать задачи, важна всесторонняя работа над одной задачей, в частности, и решение её различными способами. Следует отметить, что решение задач различными способами позволяет убедиться в правильности решения задачи даёт возможность глубже раскрыть зависимости между величинами, рассмотренными в задаче.

приемы знакомства с простой задачей

Возможность решения некоторых задач разными способами основана на различных свойствах действий или вытекающих из них правил. При решении задач различными способами ученик привлекает дополнительную информацию, поскольку он непроизвольно выполняет в большем числе выборы суждений, хода мысли из нескольких возможных; рассматривается один и тот же вопрос с разных точек зрения.

При этом полнее используется активность учащихся, прочнее и сознательнее запоминается материал. Как правило, различными способами решается те из задач, где этого требует вопрос, поэтому такая работа носит эпизодический характер.

В качестве основных в математике различают арифметический и алгебраический способы решения задач. При арифметическом способе ответ на вопрос задачи находится в результате выполнения арифметических действий над числами. Арифметические способы решения задач отличаются друг от друга одним или несколькими действиями или количеством действий, также отношениями между данными, данными и искомым, данными и неизвестным, положенными в основу выбора арифметических действий, или последовательностью использования этих отношений при выборе действий.

При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.

Методика работы над простой задачей - online presentation

В зависимости от выбора неизвестного для обозначения буквой, от хода рассуждений можно составить различные уравнения по одной и той же задаче. В этом случае можно говорить о различных алгебраических решениях этой задачи. Но надо отметить, что в начальных классах алгебраический способ не применяется для решения задач.

  • ТЕМА 13: МЕТОДИКА ОБУЧЕНИЯ РЕШЕНИЮ АРИФМЕТИЧЕСКИХ ЗАДАЧ
  • Методические приемы обучения решению текстовых задач на движение
  • Конспект урока в начальных классах (1 класс) по теме «Знакомство с задачей»

Опираясь только на чертёж, легко можно дать ответ на вопрос задачи. Такой способ решения называется графическим. До настоящего времени вопрос о графическом способе решения арифметических задач не нашёл должного применения в школьной практике.

приемы знакомства с простой задачей

Графический способ даёт возможность более тесно установить связь между арифметическим и геометрическим материалами, развить функциональное мышление детей. Следует отметить, что благодаря применению графического способа в начальной школе можно сократить сроки, в течение которых ученик научится решать различные задачи.

В то же время умение графически решать задачу — это важное политехническое умение. Графический способ даёт иногда возможность ответить на вопрос такой задачи, которую дети ещё не могут решить арифметическим способом и которую можно предлагать во внеклассной работе. Решение задач различными способами — дело непростое, требующее глубоких математических знаний, умения отыскивать наиболее рациональные решения.

Научить детей решать задачи — значит научить их устанавливать связи между данными и искомым и в соответствии с этим выбрать, а затем и выполнить арифметические действия. В начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными.

Группы таких задач называются задачами одного вида. Работа над задачами не должна сводится к натаскиванию учащихся на решение задач сначала одного вида, а затем другого и.

приемы знакомства с простой задачей

Главная ее цель — научить детей осознано устанавливать определенные связи между между данными и искомым в разных жизненных ситуациях, предусматривая постепенное их усложнение. Чтобы добиться этого, учитель должен предусмотреть в методике обучения решению задач каждого вида такие ступени: Подготовительную работу к решению задач; Ознакомление с решением задач; Закрепление умения решать задачи а Подготовительная работа к решению задач На этой ступени обучения решению задач того или другого вида должна быть создана у учащихся готовность к выбору арифметических действий при решении соответствующих задач: До решения простых задач ученики усваивают знание следующих связей: Связи операций над множествами с арифметическими действиями, то есть конкретный смысл арифметических действий.

Например, больше на 2, это столько же и еще 2, значит, чтобы получить на 2 больше, чем 5, надо к 5 прибавить 2. Связи между компонентами и результатами арифметических действий, то есть правила нахождения одного из компонентов арифметических действий по известному результату и другому компоненту. Например, если известна сумма и одно из слагаемых, то другое слагаемое находится действием вычитания.

Из суммы вычитают известное слагаемое. Связи между данными величинами, находящихся в прямо или обратно пропорциональной зависимости, и соответствующими арифметическими действиями.

Например, если известна цена и количество, то можно найти стоимость действием умножения. Кроме того, при ознакомлении с решением первых простых задач, ученики должны усвоить понятия и термины, относящиеся к самой задаче и ее решению задача, условие задачи, вопрос задачи, решение задачи, ответ на вопрос задачи.

Подготовкой к решению составных задач будет умение вычленять систему связей, иначе говоря, разбивать составную задачу на ряд простых, последовательное решение которых и будет решением составной задачи. При работе над каждым отдельным видом задач требуется своя специальная подготовительная работа.

На этой второй ступени обучения решению задач дети учатся устанавливать связи между данными и искомым и на этой основе выбирать арифметические действия, то есть они учатся переходить от конкретной ситуации, выраженной в задаче к выбору соответствующего арифметического действия. В результате такой работы учащиеся знакомятся со способом решения задач рассматриваемого вида.

В методике работы на этой ступени выделяются следующие этапы: Выделенные этапы органически связанны между собой, и работа на каждом этапе ведется на этой ступени преимущественно под руководством учителя.

Ознакомление с содержанием задачи. Ознакомится с содержанием задачи — значит прочитать ее, представить жизненную ситуацию, отраженную в задаче. Читают задачу, как правило, дети. Учитель читает задачу лишь в тех случаях, когда у детей нет текста задачи или когда они еще не умеют читать. Очень важно научить детей правильно читать задачу: Если в тексте задачи встретятся непонятные слова, их надо пояснить или показать рисунки предметов, о которых говорится в задаче. Задачу дети читают один — два, а иногда и большее число раз, но постепенно их надо приучать к запоминанию задачи с одного чтения, так как в этом случае они будут читать задачу более сосредоточенно.

Читая задачу, дети должны представлять ту жизненную ситуацию, которая отражена в задаче. С этой целью полезно после чтения предлагать им представить себе то, о чем говорится в задаче, и рассказать, как они представили.

После ознакомления с содержанием задачи нужно приступить к поиску ее решения: При введении задач нового вида поиском решения руководит учитель, а затем учащиеся выполняют это самостоятельно. В том и другом случае используются специальные приемы, которые помогают детям вычленить величины, данные и искомые числа, установить связи между. К таким приемам относятся иллюстрация задачи, повторение задачи, разбор и составление плана решения задачи.

Рассмотри каждый из этих приемов. Иллюстрация может быть предметной или схематичной. Предметная иллюстрация помогает создать яркое представление той жизненной ситуации, которая описывается в задаче. Ею пользуются только при ознакомлении с решением задач нового вида и преимущественно в 1 классе. Для иллюстрации задачи используются либо предметы, либо рисунки предметов, о которых идет речь в задаче: В краткой записи фиксируются в удобнообразной форме величины, числа — данные и искомые, а также некоторые слова, показывающие, о чем говорится в задаче: Краткую запись задачи можно выполнять в таблице и без нее, а так же в форме чертежа.

При табличной форме требуется выделение и название величины. Расположение числовых данных помогает установлению связей, между величинами: Искомое число обозначается вопросительным знаком. Многие задачи можно иллюстрировать чертежом. Одно из чисел данных в задаче число детей, число метров в материи изображают отрезком, задав определенный масштаб без употребления этого слова и используя данные в задаче соотношения этого числа и других чисел, изображают эти числа в 2 раза больше, на 4 кг меньше соответствующим отрезком.

Задачи, связанные с движением, также можно иллюстрировать с помощью чертежа. Используя иллюстрацию, ученики могут повторить задачу. При повторении лучше, чтобы дети объясняли, что показывает каждое число и что требуется узнать в задаче. При ознакомлении с задачей нового вида, как правило, используется какая- либо одна иллюстрация, но в отдельных случаях полезно выполнить предметную и схематичную иллюстрацию. В процессе выполнения иллюстрации некоторые дети находят решение задачи, то есть они уже знают, какие действия надо выполнить, чтобы решить задачу.

Однако часть детей может установить связи между данными и искомыми выбрать соответствующее арифметическое действие только с помощью учителя.

приемы знакомства с простой задачей

В этом случае учитель проводит специальную беседу, которая называется разбором задачи. Рассуждение можно строить двумя способами: Чаще следует использовать первый способ рассуждения, так как при этом ученик должен иметь в виду не одно выделенное действие, а все решение в целом.

При использовании второго способа разбора учитель прямо подводит их к выбору каждого действия. Разбор составной задачи заканчивается составлением Разбор составной задачи заканчивается составлением плана решения — это объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку арифметических действий. Все, указанные выше приемы могут быть широко использованы при решении всех видов задач.

Простой арифметической задачей называется задача, которая решается одним арифметическим действием.

Методика работы над простой задачей

Простые задачи играют чрезвычайную роль при обучении учащихся математики. Именно простые задачи позволяют раскрыть основной смысл и конкретизировать арифметические действия, сформировать те или иные математические понятия. Простые задачи являются составной частью сложных задач, а следовательно, формируя умение решать их, учитель готовит учащихся к решению сложных задач.

На каждом учебном году обучения учащиеся знакомятся с новыми видами простых задач. Постепенное введение их объясняется различной степенью трудности математических понятий, местом изучения тех арифметических действий, конкретный смысл которых они раскрывают. Не менее пристального внимания учителя при выборе задач данного вида заслуживает и конкретизация и содержание.

Наконец учитель учит конкретизировать содержание задачи, вскрывая зависимость между данными и искомыми с помощью различных форм краткой записи. Опыт работы лучших учителей показывает, что подготовку к решению арифметических задач следует начинать с обогащения и развития практического опыта учащихся, ориентировки их в окружающей действительности. Учеников нужно вести в ту жизненную ситуацию, в которой приходится считать, решать арифметические задачи, производить изменения.

Причем эти ситуации не следует на первых порах создавать искусственно, на них лишь следует обратить и направлять внимание учащихся.

Учитель организует наблюдение над изменением количества элементов предметных множеств содержимого сосудов и. Надо организовать так игровую и практическую деятельность учащихся, чтобы, являясь непосредственными участниками этой деятельности, а также наблюдая, учащиеся сами могли делать вывод в каждом отдельном случае; увеличилось или уменьшилось число элементов множества и какой операцией и словесному выражению соответствует это увеличение или уменьшение.

Этот этап подготовительной работы совпадает с началом работы над числами первого десятка и знакомства с арифметическими действиями, с решением и составлением примеров операций с предметными множествами. Прежде чем приступить к обучению решения арифметических задач, учитель должен ясно себе представить, какие знания, умения и навыки нужно дать ученикам.

Чтобы решить задачу, ученики должны решать арифметические примеры, слушать, а затем читать задачу, повторять задачу по вопросам, по краткой записи, по памяти, выделять в задаче составные компоненты, решать задачу и проверять ее правильность решения. В 1 классе учащиеся учатся решать задачи на нахождение суммы и остатка. Эти задачи вводятся впервые при научении чисел первого десятка.

При обучении решению задач на нахождение суммы одинаковых слагаемых, на деление на равные части или на деление по содержанию, следует опираться на понимание учащимися сущности арифметических действий умножения и деления. До решения задачи на разное сравнение учащимися нужно дать понятие о сравнение предметов одной совокупности, двух предметных совокупностей, величин, чисел, устанавливая между ними отношения равенства и неравенства.

Составной или сложной арифметической задачей называется задача, которая решается двумя или большим числом арифметических действий. Психологические исследования по изучению особенностей решения составных арифметических задач показывают, что дети не узнают знакомых простых задач в контексте новой составной задачи. Подготовительная работа к решению составных задач должна представить собой систему упражнений, приемов, целенаправленно ведущих учащихся к овладению решением составных задач.

К решению составных задач учитель может переходить тогда, когда убедится, что учащиеся овладели приемами решения простых задач, которые войдут в составную задачу, сами могут составить простую задачу определенного вида.

При решении составных задач учащиеся должны или к данным ставить вопросы или к вопросу подбирать данные. Поэтому в подготовительный период, то есть на протяжении всего первого года и в начале второго года обучения, следует предлагать учащимся задания: К готовому условию подобрать вопросы. По вопросу составить задачу, подобрав недостающие числовые данные. Составляя простые и составные задачи, учащиеся постепенно научатся узнавать в составной задаче простые, уже бывшие в опыте их решения очень полезны упражнения на составления сложных задач.

Это будет способствовать лучшему усвоению видов простых задач, умению их узнавать вычленить в составной задаче, поможет учащимся более сознательно осуществлять анализ задач.

При решении составных задач учащихся следует научить общим приемам работы над задачей; умению анализировать содержание задачи, выделяя известные данные, искомое то есть устанавливая, что нужно узнать в задачеопределите, каких данных не достает для ответа на главный вопрос в задаче. В практике работы школы оправдал себя, прием работы с карточками, заданиями в которых излагается последовательность работы над задачей.

При решении задач оформление ее решения записывается с вопросами или записывается каждое действие и поясняется.